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Abstract

The paper presents and analyses the H,, H,,, and Hankel norms of flexible structures. The analysis is
conducted for the discrete-time models of structures and compared with the continuous-time results. The
structural state-space models are presented in modal co-ordinates. Closed-form expressions for norms of
structural modes are obtained, and norms of a structure are determined from the modal norms. The
relationships between the Hankel, H.,, and H, modal norms are derived. In addition, the paper shows that
the discrete-time Hankel and H,, norms converge to the continuous-time counterparts when the sampling
time approaches zero; however, the H, norm does not.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

System norms are used to characterize system dynamics, and as such they are applied to model
reduction, sensor and actuator placement procedures, or damage detection. This paper develops
H,, H,,, and Hankel norms for the discrete-time models of flexible structures and compares them
to the related continuous-time norms. The norms for the continuous-time models of flexible
structures are presented in Ref. [1]. Some variables known from literature are identical with the
norms. For example, the component cost of Skelton [2] is equivalent to the A, norm. The Hankel
singular value of flexible structure, see Refs. [3,4] is equivalent to the Hankel norm. The resonant
peak of a structure is equivalent to the H, norm. Nevertheless, it is useful to interpret these
quantities as system norms since it expands their applications, by taking advantage of the generic
properties of system norms. For example, using norm properties allows combining the norms of
structural modes into the related norm of the entire structure.
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We pay attention to the discrete-time norms of flexible structures, because of their possible
applications. Often structural models need to be represented as discrete-time models, for example
in controller design, in hardware-in-the-loop simulations, in system identification procedures. The
paper derives discrete-time norms for structural modes in a closed-form. Next, the norm of the
entire structure is obtained from modal norms. The H,, H.,, and Hankel norms are compared,
and their convergence to the continuous-time norms is investigated.

All three norms require the knowledge of controllability (reachability) and observability
grammians, therefore in the introductory part of the paper we analyze the grammians. The
grammians for flexible structures in continuous time were analyzed by Gregory [3], Jonckheere [4],
Gawronski [5], and Williams [6], and in discrete-time by Lim and Gawronski [7].

2. Structural equations

We consider a flexible structure model is represented by the following second order differential
equation:

Mg+ Dg + Kq = Bou, y= Coqq + Covq.- (1)

In this equation ¢ is the n; x 1 displacement vector; u is the s x 1 input vector, y is the output
vector, r x 1; M is the mass matrix, ny X ng, D is the damping matrix, ny; X ng, and K is the
stiffness matrix, ny x ng. The input matrix B, is ny x s, the output displacement matrix C,, is
r X ng, and the output velocity matrix C,, is r X ng; ng is the number of degrees of freedom. The
mass matrix is positive definite, and the stiffness and damping matrices are positive semidefinite.
The damping matrix is assumed proportional, on proportional damping see Ref. [8,9]. The above
conditions define a stable and a minimum-phase system.

Let @ (n; x n) be a modal matrix, consisting of n natural modes, and n<n,. Introducing the co-
ordinate transformation

q = Pgm (2)
we obtain Eq. (1) in modal co-ordinates g,,,:
Qmi + 2Ciwiq'mi + CU?Qmi = bmiua
n
Vi = Cmgi9mi + Cmvié]mi Yy = Zyi, (3)
i=1

where ¢,,; is a displacement of the ith mode, w; is the ith natural frequency, {; is the damping of the
ith mode, and b,,;, ¢ugi, Cmvi are modal input and output matrices. For details of derivation see for
example Ref. [1].

3. State-space modal representation

In this section we derive the continuous- and discrete-time state-space representations in modal
co-ordinates that later are used in the derivation of properties of structural norms.
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3.1. Continuous-time state-space representation

We begin with state-space representation (A4, B, C) of a continuous-time model, which is a short
notation of the following differential equation:

X = Ax + Bu, y = Cx. 4)

In the above equations the N-dimensional vector x is called the state vector, the s-dimensional
vector u is the system input, and the r-dimensional vector y is the system output. The 4, B, and C
matrices are real constant matrices of appropriate dimensions (4 is N x N, Bis N x s, and C is
rx N).

For a flexible structure given by Eq. (3) one can obtain a modal state-space representation, as
presented in Ref. [1]. It is a triple (4,,, By, C,,) characterized by the block-diagonal state matrix,
A

Am = diag(Ami): (Sa)
i=1,2,...,m, where A4,, are 2 x 2 blocks, and the modal input and output matrices are divided
correspondingly:

Bml

Bm2
Bm = . 5 Cm = [ le CmZ e Cmn ]: (Sb)

an
where B,,; and C,,; are 2 x s, and r x 2 blocks, respectively.

The state x of the modal representation consists of n = N /2 independent components, x;, and
each component consists of two states,
Xil
xi=14 = 5. (6)
Xi2

The ith component, or mode, has the state-space representation (4,,;, By, Cni). The modal blocks
Anis Bni, and C,,; of these models are as follows:

0 w; 0
Ami = P By =
—o; —2{o; bmi

The ith state component of the first modal models is

xi= ¢ (7b)
qmi

where ¢,,; and ¢,,; are the ith modal displacement and velocity.
The output y is obtained as a sum of the modal outputs y;

Y= Z)’i, (83)
i=1

Cmgi
o Gui= |~ Cmi|. (7a)
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which are independently obtained from the state equations
Xi = AmiXi + Bty Vi = GuiX;. (8b)

This decomposition is derived from the block-diagonal form of the matrix A4,,.
The transfer function of a structure in modal co-ordinates is

G(S) = Cm(SI - Am)ile (9)

and it is a composition of modal transfer functions:

n

< Cmgqi + .wcmvi bmi
G@) = Gulw) =) _ Cmgi + J2 ) (10a)
i=1

— 0} — ? + 2§00’

i
where

. - Cngi F JOCr0))Dii
Gmi(w) = C’”f(-]a)l a Am[) 1Bmi - a()zmql G)2J+ Z]Zl)a)’:l),

i

(10b)

i =1, ...,nis the transfer function of the ith mode. This decomposition is proved by introduction
of A4,,, B, and C,, as in Eqs. (5a) and (5b) to the definition of the transfer function (9).

3.2. Discrete-time state-space representation

The discrete-time sequences xi, g, and y; represent sampled continuous-time signals x(7), u(z),
and y(¢), with sampling time A¢, that is, x; = x(kA?), ux = u(kAtr), and y, = y(kAt), k =1,2,3....
The corresponding discrete-time representation for the sampling time Af is denoted (A4, By, Cy),
and represents the discrete-time state-space equations

Xi+1 = Aaxi + Bauy, Vi = Cxg. (11a)

In these equations the matrices 4; By and C; and are obtained as
At
Ag=¢eM By = / e™Bdr, and C;=C. (11b)
0

We assume that the sampling time is sufficiently small, such that the Nyquist sampling criterion
1s satisfied, i.e., that

wAt<n  or  Ar< foralli. (12)
Wi
More on the Nyquist criterion see for example Ref. [10 p.111].

Similar to the continuous-time models the discrete-time model can be also presented in modal
co-ordinates (assuming small damping). In this case the state matrix in modal co-ordinates A4, is
block-diagonal,

Adm = diag(Admi)a (13)
i=1,...,n The 2 x 2 blocks A4,; are in the form; see Ref. [7]:
cos(w;At)  —sin(w;Af)
sin(w;Af)  cos(w;Af) |’

Admi = C_Ciwim

(14)
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where and {; are the ith natural frequency and the ith modal damping, respectively. The modal
input matrix By, consists of 2 x s blocks B

Bdml
B
B = | ", (15a)
Ba’mn
where
1 sin(w;At) —1 + cos(w;Af)

Bdmi = SiBmi: Sz' =

— , , (15b)
w; | 1 — cos(w;At) sin(w;At)

and B,,; is the part of the continuous-time modal representation, see Eq. (7a). The discrete-time
modal matrix Cg, is the same as the continuous-time modal matrix C,,.

The discrete transfer function is obtained from the state-space representation as in Eq. (11), by
introducing the shift operator z such that x;, | = zx;, obtaining

Ga(z) = Cy(zl — Ag)”'By. (16)

We use this equation to obtain the transfer function for the ith mode. Using 4, as in Egs. (13) and
(14), we obtain

1
(Z[ - Adml’)_1 =7

] (17a)

z — e L9 cos(w;At) e~ LA sin(w;At)
e~ lwiAt sin(w;Af) 7 — g fwiht cos(w;Al) 5
where d = 22 — 2ze~“" cos(w;Ar) 4 e~ ***. Next, using By as in Eq. (15b) and noting that B,,; =

0 .
we arrive at
bmi

Cmi

Gdi(z) = (,Od

sin(w;At)(z — e *@iAh) (17b)

(1 — cos(w;A1))(z + eCwl-Az)]

which is the transfer function of the ith mode. Note that C,,; and b,,; in the above equation are the
output and input matrices of the continuous-time model.

4. Controllability /reachability and observability

Controllability and observability properties of a linear time-invariant system can be heuristically
described as follows. The system dynamics described by the state variable (x) is excited by the input
(u) and measured by the output (y). However, the input may not be able to excite all states, and
consequently, cannot fully control the system. Also not all states may be represented at the output,
consequently, they cannot be recovered from the system output. However, if the input excites all
states, the system is controllable, and if all the states are represented at the output, the system is
observable. In terms of modal models, a structure is controllable if the installed actuators excite all
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its structural modes. It is observable if the installed sensors detect the motions of all the modes.
Reachability is a discrete-time equivalent of controllability.

4.1. Continuous-time controllability and observability

Consider a continuous-time system with the state-space representation (4, B, C), where 4 is
N x N. It is controllable if and only if the matrix

%=[B AB A’B ... AV'B] (18a)
has rank N. It is observable if and only if the matrix
C
CcA
0= | C4? (18b)
CAN-1

has rank N.
Define the following non-negative matrices

[e¢] 0
W, = / exp(Af)BBT exp(ATr)dt, and W, = / exp(4T1)CT C exp(4r) dt, (19)
0 0

called controllability and observability grammians, respectively. The system is controllable, if the
controllability grammian is positive definite. It is observable if the observability grammian is
positive definite. The grammians can be obtained from the Lyapunov equations

AW.+ W. AT+ BB" =0 and A"W,+ W,A+ C'C =0. (20)

The grammians and their eigenvalues change during co-ordinate transformations; however, the
eigenvalues of the grammian product are invariant under co-ordinate transformations. These

invariants, denoted 7y;,

v = Ai(W.W,), i=1,..., N. 21
are called the Hankel singular values of the system.
4.2. Discrete-time reachability and observability

Consider now the discrete-time system, as given by Eq. (11). The reachability matrix % is
defined similar to the controllability matrix of a continuous-time system:

% =[Bs AsBs -+ AS'By]. (22)
On the other hand, the reachability grammian W.(k) is defined over the time interval [0, kAf] as

k
Walk) = > AyBaBi (A" (23)
i=0

and unlike the controllability matrix of continuous-time systems the reachability matrix of the
discrete-time system can be used to obtain the discrete time reachability grammian W.(k).
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Namely,
Wac(k) = 616} (24)
The stationary grammian (i.e., for k — c0) satisfies the discrete-time Lyapunov equation
Wae — AaWaeAy = B4By. (25)
Similarly, the observability matrix O is defined as

C

CA
Oe=| ¢ (26)

cAak!
and the discrete-time observability grammian Wy, (k) for the time interval [0, kAf] is defined as
k
Waolk) =Y (4T CTCAl, (27)
i=0
which is obtained from the observability matrix
Wao(k) = OL Oy (28)
For k— oo (stationary solution) the observability grammian satisfies the Lyapunov equation
Wao — Ay Wada = CTC (29)

Similar to the continuous-time grammians, the eigenvalues of the discrete-time grammian
product are invariant under co-ordinate transformation. These invariants are denoted y,;,

Vai = VA (Wae Wao), (30)

where i = 1, ..., NV, and are called the Hankel singular values of the discrete-time system.
4.3. Convergence of the discrete-time grammians
We show that the discrete-time reachability and observability grammians do not converge to

the corresponding continuous-time controllability and observability grammians when the
sampling time approaches zero. Indeed, consider the continuous time observability grammian

as in Eq. (19). It can be approximated in discrete time, at time moments ¢ = 0, Az, 2A¢, ... as
0 o0
W, = et MCTCeAr =Y (4T CTCAi AL (31)
i=0 i=0

Introducing Eq. (27) for k— oo, one obtains
W, = lim At Wy,. (32)
At—0
Similarly, one can obtain this for the controllability/reachability grammians. First note that for

small sampling time one obtains
B,=~At B. (33)
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Indeed, from the definition of By it follows that

At At 1
B, :/ el Bdr = (1+AT+§A2T2+)Bd’L’
0 0

1
= BAt +14BAP + EAZBAt3 + - =AtB.
Now, from the definition of the continuous-time controllability grammian the following holds:
o0 o0
W.= / e BBTe! " dr = lim ) MM BBTeM AL,
0 At—0 —0

Using Egs. (33) and (23), and 4, = e?’ one obtains

I & : 1
W, = lim — Y A,B;BY(4)" = lim —W,
= limy iy 2 AUBBIAD" = fim W

hence

1
.= lim —Wy,. 4
. A}LHOAZ‘Wd (34)

Note however from Eq. (32) to (34) that the product of the discrete-time reachability and
observability grammians converge to the continuous-time grammians,

Wc Wo = AltlmO( Wdc Wdo)a (35)
therefore the discrete-time Hankel singular values converge to the continuous-time values, as the
sampling time approaches zero:

;= lim 7y,
vi = lm g (36)

5. Grammians of flexible structures

For flexible structures in modal co-ordinates the grammians are diagonally dominant, which
simplifies the analysis of norms, performed later in this paper.

5.1. Continuous-time grammians of flexible structures
For flexible structures in modal co-ordinates controllability and observability grammians are
diagonally dominant, see Refs. [1,5,6], i.e.,
W.~diag(w.I,) and W,=>~diag(w,l), (37a)
where

2 2
W = ||Bml||2 W = I|sz||2
Ccl 4Cl-a)l' > ol 45:1-(1)1' >

(37b)
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and the approximate Hankel singular values are obtained from

||Bml|| ||Cmi||
Vi A/ WeiWoi = # (38)

5.2. Discrete-time grammians of flexible structures

Consider now a structure in modal co-ordinates. Similar to the continuous-time grammians the
discrete-time grammians in modal co-ordinates are diagonally dominant:

Wdc = dlag( Wdcl ) Wch: cees Wdcn)a Wdo = dldg( Wdol ) Wdo2a cees Wdon)7 (39)
where Wy and Wy, are 2 x 2 blocks, Wy = wy.ilh, and Wy, = wy,ils, see Ref. [7], where

N |Buill3 2(1 — cos(w;Af)  2(1 — cos(w;Al)
T w2A1 e w2A1

(40)

and

— ||sz||§i - w L
4w At UAF

Weoi (41)

Again, B,,; is the ith block of B,, in the continuous-time modal co-ordinates, see Eq. (7a), and C,,,;
1s the ith block of C,, in continuous-time modal co-ordinates. Also w, and w,; denote the
continuous-time controllability and observability grammians, respectively, cf. Eq. (37b).

Note that the discrete-time reachability grammian deviates from the continuous-time
controllability grammian by the factor 2(1 — cos(w;A7))/w?At, while the discrete-time observa-
bility grammian deviates from the continuous-time observability grammian by factor 1/A¢. Thus,
the discrete time grammians do not converge to the continuous-time grammians, but satisfy the
conditions

fim Ve
At—0 A[

= We, AhmO WaoilAt = W, (4221, b)
=

which is consistent with the Moore result; see Ref. [11].

The Hankel singular values are the square roots of the eigenvalues of the grammian products,
ry,=." 2(W4.Wy,). The approximate values of the Hankel singular values can be obtained from
the approximate values of the grammians,

||Bmi||2||Cmi||2 \/2(1 - COS((D,’AZ))
V. . i = . 4
Vdi = A/ WdciWdo 4Ciwi CO,-AZ ( 3)

Note that the discrete-time Hankel singular values differ from the continuous-time values by a
factor k;,

Vai =ki Vi (44a)
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11

0.6

0 0.5 1 15 2 25 3
w; At
Fig. 1. Plot of k; versus w;At.

where

k= v/2(1 — cos a)iAt)' (44b)

CO,'AZ

The plot of k;(w;Af) is shown in Fig. 1; it shows that for small sampling time, discrete-time and
continuous-time Hankel singular values are almost identical.

It follows from Fig. 1 that if the sampling rate is high enough (or the sampling time small
enough), the discrete-time Hankel singular values are very close to the continuous-time Hankel
singular values. For example, if w;Ar<0.6 the difference is less than 3%, if w;Ar<0.5 the
difference is less than 2%, and if w;Ar<0.35 the difference is less than 1%. Note also that for a
given sampling time the discrete-time Hankel singular values corresponding to the lowest natural
frequencies are closer to the continuous-time Hankel singular values than the Hankel singular
values corresponding to the higher natural frequencies.

Example 1. Consider the discrete-time simple system as in Fig. 2, with ky =k, = k3 =3, k4 = 0,
and m; = my = m3 = 1. The damping is proportional to the stiffness matrix, D = 0.01 K. Its
Hankel singular values are determined for sampling times Az = 0.7s and for Ar = 0.02s, and
compared with the continuous-time Hankel singular values.

The Hankel singular values for the continuous-time structure, and for the discrete-time
structure with sampling times Az = 0.7 and 0.02 are given in Table 1.

The table shows that for the sampling time Ar = 0.7 s the discrete-time Hankel singular values
are smaller than the continuous-time values, especially for the third mode (note that two Hankel
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fy oy fa, Ao f3, a3
[, [
da dy

Fig. 2. A simple structure.

Table 1
Hankel singular values
Mode Continuous time Discrete time At = 0.7 s Discrete time At = 0.02s
Mode 1 20.342 20.138 20.343
20.340 20.009 20.340

Mode 2 4.677 4.324 4.679

4.671 4.225 4.670
Mode 3 0.991 0.848 0.992

0.986 0.785 0.986

singular values correspond to each mode). In order to explain it, note that the natural frequencies
are w; = 0.771 rad/s, w, = 2.160rad/s, and w3 = 3.121 rad/s. For each mode the sampling time
must satisfy the Nyquist condition (12). For the first mode n/w; = 4.075, for the second mode
n/w, = 1.454, and for the third mode /w3 = 1.007. Thus, the sampling time satisfies condition
(12). However for this sampling time one obtains w;Ar = 0.540, w,At = 1.512, and w;Ar = 2.185.
It is visible from Fig. 1 that for these values of w;At the discrete-time Hankel singular values are
smaller than the continuous-time ones, especially for the third mode.

The results are different for the sampling time of Az = 0.02s. In this case one obtains wAt =
0.015, wrAt = 0.043, and w;Ar = 0.062. One can see from Fig. 1 that for these values of w;At the
discrete-time Hankel singular values are almost equal to the continuous-time ones.

Next, the accuracy of the approximate relationship (44a) between discrete- and continuous-time
Hankel singular values is verified. The accuracy is expressed with the coefficient k;, Eq. (44b). The
Hankel singular values were computed for different sampling times, and compared with the
continuous-time Hankel singular values. Their ratio determines coefficient k;. The plot of k;
obtained for all three modes and the plot of the approximate coefficient from Eq. (44b) are shown
in Fig. 3. The plot show, that the approximate curve and the actual curves are close, except for
w;At very close to 7.

6. Norms

The Hankel, H.,, and H, norms are analyzed in this paper. Their properties are derived and
specified for structural applications.
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Fig. 3. Exact and approximate coefficient k; versus w;At: ———, approximate; —, ki; ---, ka; -+ -, k.
6.1. Continuous-time norms
6.1.1. The H,, norm
The H,, norm is defined as
Iyl
Gl = sup (45a)
u(ny#0 (D>
or alternatively as
”G”oo = mu?-x O'max(G(w))a (45b)

where omax(G(w)) is the largest singular value of G(w). In particular, the H,, norm of a single-
input-single-output system is the peak of the transfer function magnitude, ||G||,, = max,, |G(w)|.
This norm is useful in the system analysis and controller design since as the induced norm it can
provide the bounds of the r.m.s output errors. Namely, let # and y be the system input and output,
respectively, and G its transfer function, then from Eq. (45a) we obtain

IVl <Gl o el (46)

It is seen from the above inequality and Eq. (45b) that ||G]|, is the worst-case gain for sinusoidal
inputs at any frequency.

The H,, norm can be computed as a maximal value of p such that the solution S of the
following algebraic Riccati equation is positive definite:

ATS + S84+ p~'SBB'S + p~'CTC = 0. (47)
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It is an iterative procedure where one starts with a large value of p and reduce it until negative
eigenvalues of S appear.

6.1.2. The Hankel norm

The Hankel norm of a system is a measure of the effect of its past input on its future output, or
the amount of energy stored in, and subsequently retrieved from, the system [12, p. 103]. It is
defined as

(48)

)=0 forz>0.
161 = supl 22 here {”() °r

()]l y(t)=0 for¢<O.

Comparing definition (45a) of the H., norm and the above definition of the Hankel norm one can
see that the H,, norm is the largest output for all possible inputs contained in an unit ball, while
the Hankel norm is the largest future output for all past inputs from the unit ball. From these
definitions it follows that the Hankel norm never exceeds the H., norm (since the set of outputs
used to evaluate the Hankel norm is a subset of outputs used to evaluate the H.,, norm), thus

1Gll, <IIGl|. - (49)

The Hankel norm can be determined from the controllability and observability grammians as

||Gl|h =V Lmax(We W) (50)

where A,.(.) denotes the largest eigenvalue, and W,., W, are the controllability and observability
grammians, respectively. It follows from (50) that the Hankel norm of the system is the largest
Hankel singular value of the system, 7,,,.:

||G||h = Vmax. (51)

6.1.3. The H, norm
Let G(w) be its transfer function of a stable linear system. The H, norm of the system is defined
as

6= [ WG @) do. (52)

Note that tr(G*(w)G(w)) is the sum of the magnitudes squared of all of the elements of G(w), i.e.
tr(G*(w)G(w)) =D llgii(je)|. Thus, it can be thought to be an average gain of the system, with
the average performea over all the elements of the matrix transfer function and over all frequencies.
Since the transfer function G(w) is the Fourier transform of the system impulse response g(?),
from the Parseval theorem, Eq. (52) can be rewritten as an average of the impulse response,

1GIE = lg0)IE = / (g (Dg(0) d. (53)

0

A convenient way to determine the numerical value of the H, norm is to use the formulas

1G]y = VIr(CTCWo), |Gy = Vtr(BBTW,), (54)

where W, and W, are the controllability and observability grammians.
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6.2. Discrete-time norms

In this section we present the Hankel, H.,, and H, norms for the discrete-time systems, and
compare them with the norms of the continuous-time systems.

6.2.1. The Hankel norm
The Hankel norm of a discrete-time system is its largest Hankel singular value,

Gall, = max (55)

where subscript d denotes a discrete-time system. Previously, we showed that the discrete-time
Hankel singular values converge to the continuous-time Hankel singular values, see Eq. (36),
therefore the discrete-time Hankel norms converge to the continuous-time Hankel norms when
the sampling time approaches zero:

= I .
Gl = lim (Gl (56)

6.2.2. The H,, norm
The H, norm of the discrete-time system is defined as (see Ref. [13])

||Gd||oc = IBEAIIX O—max(Gd(eijt))- (57)

Since for small enough sampling time the discrete-time transfer function is approximately equal to
the continuous-time transfer function, see Ref. [13], G,(e/”*)~ G.(jw), therefore the discrete-time
H,, norm converges to the continuous-time H.,, norm

G = lim ||G 58
when the Sampling time approaches Z€T10.

6.2.3. The H, norm
The discrete-time H> norm is defined as an r.m.s. sum of integrals of the magnitudes of its
transfer function, or as an r.m.s. sum of the impulse response

1/2

© 1/2
= (Z gi(mt)) : (59)
i=0

In the above equation g,(iA?) is the impulse response of the discrete-time system at ¢ = iAt.
Similar to the continuous-time case the H, norm can be calculated using the discrete-time
grammians W, and Wy,

2n
1Gall, = (ZL /0 tr(G (@A) G (M) d(wAz))

1Gall} = tr(CTCW,.) = tr(ByBY Wy). (60)

A relationship between discrete-time H» norm and the continuous-time H; norm is derived by
introducing the relationships between discrete-time grammians and the continuous-time
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grammians, as in Egs. (32) and (34) to Eq. (60). In this way we obtained
1
16113 = Jim —=IIGall. (61)

As we see, unlike the Hankel and H ., norm cases, the discrete-time H, norm does not converge to
the continuous-time H, norm when the sampling time approaches zero. It can be explained using
the system impulse responses. The continuous-time H, norm is obtained from the continuous-
time unit impulse response,

IGIE = /0 #(x) dr

which can be approximated as
IGI3= " g*(iAnAL. (62)
i=0

The applied impulse value was equal to 1. Note, however, that for the discrete-time system the
impulse response is evaluated for the impulse value different than 1. Indeed, for the discrete-time
system the impulse amplitude was 1 and its duration was Az. Thus the impulse value, as a product
of its amplitude and duration, is Az. For this reason, the relationship between the impulse
responses of the continuous- and the discrete-time system is g.(iAz) = g4(iAt)/At. Introducing this
equation in Eq. (62) one obtains

1 & 1
2~ 20z _ 2
Gl g, 2 iCiA) = 5 IGall

which is identical to Eq. (61).

7. Norms of flexible structures

In this section we derive the closed-form expressions for the Hankel, H.,, and H, norms of a
single mode, and explain how to obtain a norm of an entire structure from the norms of modes. It
will be done in both the continuous- and discrete-time cases.

7.1. Continuous time norms of flexible structures

For structures in the modal representation, each mode is independent, thus the norms of a
single mode are independent as well.

7.1.1. The H, norm
Consider the ith natural mode and its state-space representation (A,,;, Byi, Cii); see Eq. (7a).
For this representation one obtains the following closed-form expression for the H, norm,
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see Ref. [1]:
~||Bmi||2||cmi||2

Gl = =

Note also that |G|, is the modal cost of Skelton [14].
The above represent the H; norm of a single mode. The H> norm of the entire flexible structure
is the r.m.s. sum of the modal norms

Gl =\/> " 1IGHB, (64)

where n is the number of modes. It can be shown, by noting that the controllability grammian W,
in modal co-ordinates is diagonally dominant, that

(63)

IGI5 = t(CRCu W)= Y te(Cr, CriWai) = > NIGill5.
i=1 i=1

7.1.2. The H,, norm
The H,, norm of a natural mode can be approximately expressed in closed-form as:

||Bmi||2||cmi||2

IGillo =52

(65)

In order to show this, note that the largest amplitude of the mode is approximately at the ith
natural frequency, thus

gmax(CmiBmi) _ ||Bmi||2||cmi||2

1Gilloe = Omax(Gilew) = =5 - 2Lior

The above represents the H,, norm of a single mode. Due to the almost independence of the
modes, the H.,, norm of a flexible structure is the largest of the mode norms, i.e.,

Gl = max [|Gill o, i=1,....n.

7.1.3. The Hankel norm
For a single mode this norm is approximately evaluated from the following closed-form
formula, see Ref. [1]:

||Bmi||2||Cmi||2
G|, =y, xS 66
IGill =7 == 2 (6)
The Hankel norm of the entire structure is the largest norm of its modes, i.e.,
Gl = max NGillh = Vimax (67)

where y,,,. 18 the largest Hankel singular value of the system.
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Fig. 4. Modal norms versus modal damping: —, Ha; ---, Hy; ----- , Hankel.

7.1.4. Norm comparison
The Hankel and H ., norms are related to the Hankel singular values as follows, see Ref. [15, p.
156]:

Gl = P <NIGllo <27 (68)
i=1

It is a very rough estimation, indeed, since it says that y,,,, <27,...- However, for structures more
precise estimation can be obtained. Comparing Egs. (63), (65) and (66) one obtains the
approximate relationships between H,, H,.,, and Hankel norms,

1Gill o =21|Gill, = v/ Gl Gill. (69)

The norms depend on modal damping, as illustrated in Fig. 4.

7.2. Discrete-time norms of flexible structures

The norms of discrete-time structures are obtained in a similar way as the norms of the
continuous-time structures. First of all, the system matrix 4, in discrete-time modal co-ordinates
is block-diagonal, similar to the continuous time case. For a diagonal 4, the structural norms are
determined from the norms of structural modes, as described previously.



1000 W. Gawronski | Journal of Sound and Vibration 264 (2003) 983—1004

7.2.1. The Hankel norm
The Hankel norm of the discrete-time system is defined (similar to the continuous-time case) as
a “‘geometric mean” of the discrete-time reachability and observability grammians, i.e.,

1Galls = V/ 2max(Wae Wao). (70)

The grammians in modal co-ordinates are diagonally dominant, therefore for a single (ith) mode
we obtain from Egs. (40) and (41) as

||Bmi||2||Cmi||2
4Liwo;

where k; is given by Eq. (44b), w,; = w;At, and ||G4l|, is the Hankel norm of the ith mode in
discrete- time, while ||Gj||, is the same norm of the ith mode in continuous- time. For fast
sampling, i.e., when Ar—0 one obtains k; = 1, which means that the discrete Hankel norm
converges to the continuous one.

Similar to the continuous-time case the Hankel norm of the entire structure is the largest norm
of its modes, i.e.,

|Gaill, = kit = killGilly, (71)

||Gd||h = mlax ||Gdi||/1 = Vd max> (72)
where y,,.. 1 the largest Hankel singular value of the discrete-time system.

7.2.2. TheH,, norm
The H.,, norm of a discrete-time system is defined as the peak magnitude over the segment
0<wAr<m, ie.,
1Gall.e = SUP Gax(Ga(@”™)). (73)
wAt
For the discrete-time structure it is the largest norm of its modes. However, the H,, norm of the
ith mode is approximately the magnitude at its resonant frequency, thus for the ith mode, from
the above definition,

1Gaill o = Omax(Ga(@P21)) = M2 (G (&™) G M), (74)

“max

where G; is the discrete-time transfer function of the ith mode, and w;is its natural frequency, and
/max denotes the maximal eigenvalue.

In order to obtain its H,, norm we use the discrete-time transfer function of the ith mode as in
Eq. (17a) and (17b) at @ = w;. First, note that z = el = cos(w;Af) + j sin(w;Af), and that for
small {; one can use approximation e %A ~1 — {;w;At. Now using Eq. (17a) one obtains

1 j 1
—lj'

ZCia),-At
For B, asin Eq. (15b), and B,,; = [ bO _], the modal transfer function at its resonance frequency
is therefore m

(zd — AV _ o =

Cmi

dei(wi) =

1 — cos(w;At) — j sin(w;At)
sin(w;A?) + j(1 — cos(wiAn) | "
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Introducing the above in Eq. (74) one obtains

i * i Cmi bmi
1Gall,, = 212(Gate )Gty = 1Cmlallbmill y oo, an). (75)
B Ci(D[ At
which can be presented in the form
Bmi Cmi
1Gall, = lead BrilbllCoills e (76)

2Ciwoi

where w,; = w;At, ||Gil|, 1s the H,, norm of the continuous-time mode, c.f. Eq. (65), and k; is the
coefficient given by Eq. (44b). Since k; = 1 for At — 0, the discrete-time H ., norm converges to the
continuous-time norm.

The above represents the H,, norm of a single mode. Due to the almost independence of the
modes, the H,, norm of a flexible structure is the largest of the mode norms, i.e.,

1Gallo, = max||Gaill o, i=1,...n. (77)

7.2.3. The H, norm
Similar to the continuous-time case, the H, norm of a structure is the r.m.s. sum of the H,
norms of its modes,

Gl =\/> " 1IGIB, (78)

where n is the number of modes.
The H, norm of the ith mode is obtained as

IGailly = \/tr(BY; WoaiBai) (792)

1Gailly = \/tr(Cai Weai Cl). (79b)

or, alternatively,

Using Egs. (79a), (15b) and (41) we obtain
1 Woi
|Gaill> Aztr(B’ S; WoiSiB;) Attr(B, S; SiB)),

where w,; is the continuous-time grammians given by Eq. (37b). Note also that

SiTSi _ 2(1 — cozs(a),-Al)Iz-
w;
Thus
2w,i(1 — cos(w;Af) 2(1 — cos(w;At)
2 +( RT _ 2
|Gaill; = Ate? tr(B; B;) = woillBill> Ao
2 2
ill5]|B; 2(1 — At

4{1'60,‘ A[zwlz
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Fig. 5. A beam.

norm

15
state number

Fig. 6. Hankel and H, norms of a beam: continuous-time model (-) discrete-time model (....).

where ||Gj||, is the H> norm of the mode in continuous time. Therefore,

Bmi Cmi
1Gally = kead Bl Coille 725G, (30)

2 V Ciwoi
where w,; = w;At. For fast sampling k; — 1, thus

Gui
lim 1Gaill>

At—0 \/A7

The above equation indicates that the discrete-time H, norm does not converge to the
continuous time. This is a consequence of non-convergence of the discrete-time reachability and
observability grammians, to the continuous-time grammians, as we showed it previously.

= 1Gill,- (81)
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7.2.4. Norm comparison
From Eqgs. (71), (76) and (80) the following relationship between the norms of a single mode of
a discrete-time system is obtained:

1Gaill oo = 21| Gailly = v/ Ciwoill Gl (82)

which is similar to the continuous-time norm, as in Eq. (69).

Example 2. Consider a beam in Fig. 5. Its model consists of the first 15 modes (or 30 states), with
a vertical force applied at node 6, and a velocity measured at node 6 in vertical direction. The
Hankel and H, norms were determined for its continuous- and discrete-time models, and are
plotted in Fig. 6. The beam largest natural frequency is 6221 rad/s. We chose sampling time of
0.0003s. The Nyquist frequency for this sampling time is ©/A¢ = 10472 rad/s, so that the largest
natural frequency is close to the Nyquist frequency. The plots of the norms are shown in Fig. 6,
for the continuous-time model in solid line, for the discrete-time model in dotted line. The Hankel
norms for the continuous- and discrete-time models are almost identical, except for some
discrepancy at higher modes, with natural frequencies close to the Nyquist frequency. The H;
norms of the continuous- and discrete-time systems are separated by the distance of 1/ \/E =
57.74, as predicted by Eq. (80).

8. Conclusions

The Hankel, H.,, and H, norms were analyzed in this paper. They were obtained for the
continuous- and discrete-time systems, and compared. These norms were obtained in closed form
for natural modes of flexible structures, and for an entire flexible structure as the rms sum of
modal norms (for the H, norm), and as the maximal modal norm (in case of the Hankel and H .,
norms). We also derived the relationship between the continuous and discrete- time norms. We
showed that the H.,, and Hankel discrete-time norms converge to the continuous-time
counterparts when the sampling time approaches zero. We show, however, that the H, norm
does not converge.
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