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Abstract

The paper presents and analyses the H2; HN; and Hankel norms of flexible structures. The analysis is
conducted for the discrete-time models of structures and compared with the continuous-time results. The
structural state-space models are presented in modal co-ordinates. Closed-form expressions for norms of
structural modes are obtained, and norms of a structure are determined from the modal norms. The
relationships between the Hankel, HN; and H2 modal norms are derived. In addition, the paper shows that
the discrete-time Hankel and HN norms converge to the continuous-time counterparts when the sampling
time approaches zero; however, the H2 norm does not.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

System norms are used to characterize system dynamics, and as such they are applied to model
reduction, sensor and actuator placement procedures, or damage detection. This paper develops
H2; HN; and Hankel norms for the discrete-time models of flexible structures and compares them
to the related continuous-time norms. The norms for the continuous-time models of flexible
structures are presented in Ref. [1]. Some variables known from literature are identical with the
norms. For example, the component cost of Skelton [2] is equivalent to the H2 norm. The Hankel
singular value of flexible structure, see Refs. [3,4] is equivalent to the Hankel norm. The resonant
peak of a structure is equivalent to the HN norm. Nevertheless, it is useful to interpret these
quantities as system norms since it expands their applications, by taking advantage of the generic
properties of system norms. For example, using norm properties allows combining the norms of
structural modes into the related norm of the entire structure.
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We pay attention to the discrete-time norms of flexible structures, because of their possible
applications. Often structural models need to be represented as discrete-time models, for example
in controller design, in hardware-in-the-loop simulations, in system identification procedures. The
paper derives discrete-time norms for structural modes in a closed-form. Next, the norm of the
entire structure is obtained from modal norms. The H2; HN; and Hankel norms are compared,
and their convergence to the continuous-time norms is investigated.
All three norms require the knowledge of controllability (reachability) and observability

grammians, therefore in the introductory part of the paper we analyze the grammians. The
grammians for flexible structures in continuous time were analyzed by Gregory [3], Jonckheere [4],
Gawronski [5], and Williams [6], and in discrete-time by Lim and Gawronski [7].

2. Structural equations

We consider a flexible structure model is represented by the following second order differential
equation:

M .q þ D ’q þ Kq ¼ Bou; y ¼ Coqq þ Cov ’q: ð1Þ

In this equation q is the nd � 1 displacement vector; u is the s � 1 input vector, y is the output
vector, r � 1; M is the mass matrix, nd � nd ; D is the damping matrix, nd � nd ; and K is the
stiffness matrix, nd � nd : The input matrix Bo is nd � s; the output displacement matrix Coq is
r � nd ; and the output velocity matrix Cov is r � nd ; nd is the number of degrees of freedom. The
mass matrix is positive definite, and the stiffness and damping matrices are positive semidefinite.
The damping matrix is assumed proportional, on proportional damping see Ref. [8,9]. The above
conditions define a stable and a minimum-phase system.
Let F (nd � n) be a modal matrix, consisting of n natural modes, and npnd : Introducing the co-

ordinate transformation

q ¼ Fqm ð2Þ

we obtain Eq. (1) in modal co-ordinates qm:

.qmi þ 2zioi ’qmi þ o2
i qmi ¼ bmiu;

yi ¼ cmqiqmi þ cmvi ’qmi y ¼
Xn

i¼1

yi; ð3Þ

where qmi is a displacement of the ith mode, oi is the ith natural frequency, zi is the damping of the
ith mode, and bmi; cmqi; cmvi are modal input and output matrices. For details of derivation see for
example Ref. [1].

3. State-space modal representation

In this section we derive the continuous- and discrete-time state-space representations in modal
co-ordinates that later are used in the derivation of properties of structural norms.
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3.1. Continuous-time state-space representation

We begin with state-space representation (A;B;C) of a continuous-time model, which is a short
notation of the following differential equation:

’x ¼ Ax þ Bu; y ¼ Cx: ð4Þ

In the above equations the N-dimensional vector x is called the state vector, the s-dimensional
vector u is the system input, and the r-dimensional vector y is the system output. The A; B; and C
matrices are real constant matrices of appropriate dimensions (A is N � N, B is N � s; and C is
r � N).
For a flexible structure given by Eq. (3) one can obtain a modal state-space representation, as

presented in Ref. [1]. It is a triple ðAm;Bm;CmÞ characterized by the block-diagonal state matrix,
Am:

Am ¼ diagðAmiÞ; ð5aÞ

i ¼ 1; 2; :::;m, where Ami are 2� 2 blocks, and the modal input and output matrices are divided
correspondingly:

Bm ¼

Bm1

Bm2

^

Bmn

2
6664

3
7775; Cm ¼ ½Cm1 Cm2 ? Cmn �; ð5bÞ

where Bmi and Cmi are 2� s; and r � 2 blocks, respectively.
The state x of the modal representation consists of n ¼ N=2 independent components, xi; and

each component consists of two states,

xi ¼
xi1

xi2

( )
: ð6Þ

The ith component, or mode, has the state-space representation ðAmi;Bmi;CmiÞ: The modal blocks
Ami; Bmi; and Cmi of these models are as follows:

Ami ¼
0 oi

�oi �2zioi

" #
; Bmi ¼

0

bmi

" #
; Cmi ¼

cmqi

oi

cmvi

� 

: ð7aÞ

The ith state component of the first modal models is

xi ¼
oiqmi

’qmi

( )
; ð7bÞ

where qmi and ’qmi are the ith modal displacement and velocity.
The output y is obtained as a sum of the modal outputs yi

y ¼
Xn

i¼1

yi; ð8aÞ
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which are independently obtained from the state equations

’xi ¼ Amixi þ Bmiu; yi ¼ Cmixi: ð8bÞ

This decomposition is derived from the block-diagonal form of the matrix Am:
The transfer function of a structure in modal co-ordinates is

GðsÞ ¼ CmðsI � AmÞ
�1Bm ð9Þ

and it is a composition of modal transfer functions:

GðoÞ ¼
Xn

i¼1

GmiðoÞ ¼
Xn

i¼1

ðcmqi þ jocmviÞbmi

o2
i � o2 þ 2jzioio

; ð10aÞ

where

GmiðoÞ ¼ CmiðjoI � AmiÞ
�1Bmi ¼

ðcmqi þ jocmviÞbmi

o2
i � o2 þ 2jzioio

; ð10bÞ

i ¼ 1;y; n is the transfer function of the ith mode. This decomposition is proved by introduction
of Am; Bm; and Cm as in Eqs. (5a) and (5b) to the definition of the transfer function (9).

3.2. Discrete-time state-space representation

The discrete-time sequences xk; uk; and yk represent sampled continuous-time signals xðtÞ; uðtÞ;
and yðtÞ; with sampling time Dt; that is, xk ¼ xðkDtÞ; uk ¼ uðkDtÞ; and yk ¼ yðkDtÞ; k ¼ 1; 2; 3y:
The corresponding discrete-time representation for the sampling time Dt is denoted ðAd ;Bd ;CdÞ;
and represents the discrete-time state-space equations

xkþ1 ¼ Adxk þ Bduk; yk ¼ Cxk: ð11aÞ

In these equations the matrices Ad Bd and Cd and are obtained as

Ad ¼ eADt; Bd ¼
Z Dt

0

eAtB dt; and Cd ¼ C: ð11bÞ

We assume that the sampling time is sufficiently small, such that the Nyquist sampling criterion
is satisfied, i.e., that

oiDtpp or Dtp
p
oi

for all i: ð12Þ

More on the Nyquist criterion see for example Ref. [10 p.111].
Similar to the continuous-time models the discrete-time model can be also presented in modal

co-ordinates (assuming small damping). In this case the state matrix in modal co-ordinates Adm is
block-diagonal,

Adm ¼ diagðAdmiÞ; ð13Þ

i ¼ 1;y; n: The 2� 2 blocks Admi are in the form; see Ref. [7]:

Admi ¼ e�zioiDt
cosðoiDtÞ �sinðoiDtÞ

sinðoiDtÞ cosðoiDtÞ

" #
; ð14Þ
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where and zi are the ith natural frequency and the ith modal damping, respectively. The modal
input matrix Bdm consists of 2� s blocks Bdmi

Bdm ¼

Bdm1

Bdm2

^

Bdmn

2
6664

3
7775; ð15aÞ

where

Bdmi ¼ SiBmi; Si ¼
1

oi

sinðoiDtÞ �1þ cosðoiDtÞ

1� cosðoiDtÞ sinðoiDtÞ

" #
; ð15bÞ

and Bmi is the part of the continuous-time modal representation, see Eq. (7a). The discrete-time
modal matrix Cdm is the same as the continuous-time modal matrix Cm:
The discrete transfer function is obtained from the state-space representation as in Eq. (11), by

introducing the shift operator z such that xiþ1 ¼ zxi; obtaining

Gd ðzÞ ¼ CdðzI � AdÞ
�1Bd : ð16Þ

We use this equation to obtain the transfer function for the ith mode. Using Ad as in Eqs. (13) and
(14), we obtain

ðzI � AdmiÞ
�1 ¼

1

d

z � e�zoiDt cosðoiDtÞ e�zoiDt sinðoiDtÞ

�e�zoiDt sinðoiDtÞ z � e�zoiDt cosðoiDtÞ

" #
; ð17aÞ

where d ¼ z2 � 2ze�zoiDt cosðoiDtÞ þ e�2zoiDt:Next, using Bd as in Eq. (15b) and noting that Bmi ¼
0

bmi

� 

we arrive at

GdiðzÞ ¼
Cmi

oid

ð1� cosðoiDtÞÞðz þ e�zoiDtÞ

sinðoiDtÞðz � e�zoiDtÞ

" #
bmi; ð17bÞ

which is the transfer function of the ith mode. Note that Cmi and bmi in the above equation are the
output and input matrices of the continuous-time model.

4. Controllability/reachability and observability

Controllability and observability properties of a linear time-invariant system can be heuristically
described as follows. The system dynamics described by the state variable (x) is excited by the input
(u) and measured by the output (y). However, the input may not be able to excite all states, and
consequently, cannot fully control the system. Also not all states may be represented at the output,
consequently, they cannot be recovered from the system output. However, if the input excites all
states, the system is controllable, and if all the states are represented at the output, the system is
observable. In terms of modal models, a structure is controllable if the installed actuators excite all
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its structural modes. It is observable if the installed sensors detect the motions of all the modes.
Reachability is a discrete-time equivalent of controllability.

4.1. Continuous-time controllability and observability

Consider a continuous-time system with the state-space representation (A; B; C), where A is
N � N: It is controllable if and only if the matrix

C ¼ ½B AB A2B y AN�1B � ð18aÞ

has rank N: It is observable if and only if the matrix

O ¼

C

CA

CA2

^

CAN�1

2
6666664

3
7777775

ð18bÞ

has rank N:
Define the following non-negative matrices

Wc ¼
Z

N

0

expðAtÞBBT expðATtÞ dt; and Wo ¼
Z

N

0

expðATtÞCTC expðAtÞ dt; ð19Þ

called controllability and observability grammians, respectively. The system is controllable, if the
controllability grammian is positive definite. It is observable if the observability grammian is
positive definite. The grammians can be obtained from the Lyapunov equations

AWc þ WcA
T þ BBT ¼ 0 and ATWo þ WoA þ CTC ¼ 0: ð20Þ

The grammians and their eigenvalues change during co-ordinate transformations; however, the
eigenvalues of the grammian product are invariant under co-ordinate transformations. These
invariants, denoted gi;

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
liðWcWoÞ

p
; i ¼ 1;y;N: ð21Þ

are called the Hankel singular values of the system.

4.2. Discrete-time reachability and observability

Consider now the discrete-time system, as given by Eq. (11). The reachability matrix Ck is
defined similar to the controllability matrix of a continuous-time system:

Ck ¼ ½Bd AdBd ? Ak�1
d Bd �: ð22Þ

On the other hand, the reachability grammian WcðkÞ is defined over the time interval ½0; kDt� as

WdcðkÞ ¼
Xk

i¼0

Ai
dBdBT

d ðA
i
dÞ

T ð23Þ

and unlike the controllability matrix of continuous-time systems the reachability matrix of the
discrete-time system can be used to obtain the discrete time reachability grammian WdcðkÞ:
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Namely,

WdcðkÞ ¼ CkC
T
k : ð24Þ

The stationary grammian (i.e., for k-N) satisfies the discrete-time Lyapunov equation

Wdc � AdWdcA
T
d ¼ BdBT

d : ð25Þ

Similarly, the observability matrix Ok is defined as

Ok ¼

C

CAd

^

CAk�1
d

2
66664

3
77775 ð26Þ

and the discrete-time observability grammian WdoðkÞ for the time interval ½0; kDt� is defined as

WdoðkÞ ¼
Xk

i¼0

ðAi
d Þ

TCTCAi
d ; ð27Þ

which is obtained from the observability matrix

WdoðkÞ ¼ OT
kOk: ð28Þ

For k-N (stationary solution) the observability grammian satisfies the Lyapunov equation

Wdo � AT
d WdoAd ¼ CTC ð29Þ

Similar to the continuous-time grammians, the eigenvalues of the discrete-time grammian
product are invariant under co-ordinate transformation. These invariants are denoted gdi;

gdi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
liðWdcWdoÞ

p
; ð30Þ

where i ¼ 1;y;N; and are called the Hankel singular values of the discrete-time system.

4.3. Convergence of the discrete-time grammians

We show that the discrete-time reachability and observability grammians do not converge to
the corresponding continuous-time controllability and observability grammians when the
sampling time approaches zero. Indeed, consider the continuous time observability grammian
as in Eq. (19). It can be approximated in discrete time, at time moments t ¼ 0; Dt; 2Dt; ::: as

Wo ¼
XN
i¼0

eiATDtCTCeiADtDt ¼
XN
i¼0

ðAi
dÞ

TCTCAi
dDt: ð31Þ

Introducing Eq. (27) for k-N; one obtains

Wo ¼ lim
Dt-0

Dt Wdo: ð32Þ

Similarly, one can obtain this for the controllability/reachability grammians. First note that for
small sampling time one obtains

BdDDt B: ð33Þ
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Indeed, from the definition of Bd it follows that

Bd ¼
Z Dt

0

eAt B dt ¼
Z Dt

0

ðI þ Atþ
1

2
A2t2 þ?ÞB dt

¼ BDt þ 1
2
ABDt2 þ

1

2
A2BDt3 þ?DDt B:

Now, from the definition of the continuous-time controllability grammian the following holds:

Wc ¼
Z

N

0

eAtBBTeATt dt ¼ lim
Dt-0

XN
i¼0

eiADtBBTeiATDtDt:

Using Eqs. (33) and (23), and Ad ¼ eADt one obtains

Wc ¼ lim
Dt-0

1

Dt

XN
i¼0

Ai
dBdBT

d ðA
i
dÞ

T ¼ lim
Dt-0

1

Dt
Wdc;

hence

Wc ¼ lim
Dt-0

1

Dt
Wdc: ð34Þ

Note however from Eq. (32) to (34) that the product of the discrete-time reachability and
observability grammians converge to the continuous-time grammians,

WcWo ¼ lim
Dt-0

ðWdcWdoÞ; ð35Þ

therefore the discrete-time Hankel singular values converge to the continuous-time values, as the
sampling time approaches zero:

gi ¼ lim
Dt-0

gdi: ð36Þ

5. Grammians of flexible structures

For flexible structures in modal co-ordinates the grammians are diagonally dominant, which
simplifies the analysis of norms, performed later in this paper.

5.1. Continuous-time grammians of flexible structures

For flexible structures in modal co-ordinates controllability and observability grammians are
diagonally dominant, see Refs. [1,5,6], i.e.,

WcDdiagðwciI2Þ and WoDdiagðwoiI2Þ; ð37aÞ

where

wci ¼
jjBmijj22
4zioi

; woi ¼
jjCmijj22
4zioi

; ð37bÞ
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and the approximate Hankel singular values are obtained from

giD
ffiffiffiffiffiffiffiffiffiffiffiffi
wciwoi

p
¼

jjBmijj2jjCmijj2
4zioi

: ð38Þ

5.2. Discrete-time grammians of flexible structures

Consider now a structure in modal co-ordinates. Similar to the continuous-time grammians the
discrete-time grammians in modal co-ordinates are diagonally dominant:

WdcDdiagðWdc1;Wdc2;y;WdcnÞ; WdoDdiagðWdo1;Wdo2;y;WdonÞ; ð39Þ

where Wdci and Wdoi are 2� 2 blocks, Wdci ¼ wdciI2; and Wdoi ¼ wdoiI2; see Ref. [7], where

wdci ¼
jjBmijj

2
2

4zioi

2ð1� cosðoiDtÞ
o2

i Dt
¼ wci

2ð1� cosðoiDtÞ
o2

i Dt
ð40Þ

and

wdoi ¼
jjCmijj22
4zioi

1

Dt
¼ woi

1

Dt
: ð41Þ

Again, Bmi is the ith block of Bm in the continuous-time modal co-ordinates, see Eq. (7a), and Cmi

is the ith block of Cm in continuous-time modal co-ordinates. Also wci and woi denote the
continuous-time controllability and observability grammians, respectively, cf. Eq. (37b).
Note that the discrete-time reachability grammian deviates from the continuous-time

controllability grammian by the factor 2ð1� cosðoiDtÞÞ=o2
i Dt; while the discrete-time observa-

bility grammian deviates from the continuous-time observability grammian by factor 1=Dt: Thus,
the discrete time grammians do not converge to the continuous-time grammians, but satisfy the
conditions

lim
Dt-0

Wdci

Dt
¼ Wci; lim

Dt-0
WdoiDt ¼ Woi; ð42a;bÞ

which is consistent with the Moore result; see Ref. [11].
The Hankel singular values are the square roots of the eigenvalues of the grammian products,

Gd ¼ l1=2ðWdcWdoÞ: The approximate values of the Hankel singular values can be obtained from
the approximate values of the grammians,

gdiD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wdciwdoi

p
¼

jjBmijj2jjCmijj2
4zioi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cosðoiDtÞÞ

p
oiDt

: ð43Þ

Note that the discrete-time Hankel singular values differ from the continuous-time values by a
factor ki;

gdiDki gi; ð44aÞ
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where

ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cosoiDtÞ

p
oiDt

: ð44bÞ

The plot of kiðoiDtÞ is shown in Fig. 1; it shows that for small sampling time, discrete-time and
continuous-time Hankel singular values are almost identical.
It follows from Fig. 1 that if the sampling rate is high enough (or the sampling time small

enough), the discrete-time Hankel singular values are very close to the continuous-time Hankel
singular values. For example, if oiDtp0:6 the difference is less than 3%, if oiDtp0:5 the
difference is less than 2%, and if oiDtp0:35 the difference is less than 1%. Note also that for a
given sampling time the discrete-time Hankel singular values corresponding to the lowest natural
frequencies are closer to the continuous-time Hankel singular values than the Hankel singular
values corresponding to the higher natural frequencies.

Example 1. Consider the discrete-time simple system as in Fig. 2, with k1 ¼ k2 ¼ k3 ¼ 3; k4 ¼ 0;
and m1 ¼ m2 ¼ m3 ¼ 1: The damping is proportional to the stiffness matrix, D ¼ 0:01K. Its
Hankel singular values are determined for sampling times Dt ¼ 0:7 s and for Dt ¼ 0:02 s; and
compared with the continuous-time Hankel singular values.

The Hankel singular values for the continuous-time structure, and for the discrete-time
structure with sampling times Dt ¼ 0:7 and 0:02 are given in Table 1.
The table shows that for the sampling time Dt ¼ 0:7 s the discrete-time Hankel singular values

are smaller than the continuous-time values, especially for the third mode (note that two Hankel
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singular values correspond to each mode). In order to explain it, note that the natural frequencies
are o1 ¼ 0:771 rad=s; o2 ¼ 2:160rad=s; and o3 ¼ 3:121 rad=s: For each mode the sampling time
must satisfy the Nyquist condition (12). For the first mode p=o1 ¼ 4:075; for the second mode
p=o2 ¼ 1:454; and for the third mode p=o3 ¼ 1:007: Thus, the sampling time satisfies condition
(12). However for this sampling time one obtains o1Dt ¼ 0:540; o2Dt ¼ 1:512; and o3Dt ¼ 2:185:
It is visible from Fig. 1 that for these values of oiDt the discrete-time Hankel singular values are
smaller than the continuous-time ones, especially for the third mode.
The results are different for the sampling time of Dt ¼ 0:02 s: In this case one obtains o1Dt ¼

0:015; o2Dt ¼ 0:043; and o3Dt ¼ 0:062: One can see from Fig. 1 that for these values of oiDt the
discrete-time Hankel singular values are almost equal to the continuous-time ones.
Next, the accuracy of the approximate relationship (44a) between discrete- and continuous-time

Hankel singular values is verified. The accuracy is expressed with the coefficient ki; Eq. (44b). The
Hankel singular values were computed for different sampling times, and compared with the
continuous-time Hankel singular values. Their ratio determines coefficient ki: The plot of ki

obtained for all three modes and the plot of the approximate coefficient from Eq. (44b) are shown
in Fig. 3. The plot show, that the approximate curve and the actual curves are close, except for
oiDt very close to p.

6. Norms

The Hankel, HN; and H2 norms are analyzed in this paper. Their properties are derived and
specified for structural applications.
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Table 1

Hankel singular values

Mode Continuous time Discrete time Dt ¼ 0:7 s Discrete time Dt ¼ 0:02 s

Mode 1 20.342 20.138 20.343

20.340 20.009 20.340

Mode 2 4.677 4.324 4.679

4.671 4.225 4.670

Mode 3 0.991 0.848 0.992

0.986 0.785 0.986

Fig. 2. A simple structure.
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6.1. Continuous-time norms

6.1.1. The HN norm
The HN norm is defined as

jjGjj
N

¼ sup
uðtÞa0

jjyðtÞjj2
jjuðtÞjj2

ð45aÞ

or alternatively as

jjGjj
N

¼ max
o

smaxðGðoÞÞ; ð45bÞ

where smaxðGðoÞÞ is the largest singular value of GðoÞ: In particular, the HN norm of a single-
input–single-output system is the peak of the transfer function magnitude, jjGjj

N
¼ maxo jGðoÞj:

This norm is useful in the system analysis and controller design since as the induced norm it can
provide the bounds of the r.m.s output errors. Namely, let u and y be the system input and output,
respectively, and G its transfer function, then from Eq. (45a) we obtain

jjyjj2pjjGjj
N
jjujj2: ð46Þ

It is seen from the above inequality and Eq. (45b) that jjGjj
N

is the worst-case gain for sinusoidal
inputs at any frequency.
The HN norm can be computed as a maximal value of r such that the solution S of the

following algebraic Riccati equation is positive definite:

ATS þ SA þ r�1SBBTS þ r�1CTC ¼ 0: ð47Þ
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It is an iterative procedure where one starts with a large value of r and reduce it until negative
eigenvalues of S appear.

6.1.2. The Hankel norm

The Hankel norm of a system is a measure of the effect of its past input on its future output, or
the amount of energy stored in, and subsequently retrieved from, the system [12, p. 103]. It is
defined as

jjGjjh ¼ sup
jjyðtÞjj2
jjuðtÞjj2

; where
uðtÞ ¼ 0 for t > 0:

yðtÞ ¼ 0 for to0:

(
ð48Þ

Comparing definition (45a) of the HN norm and the above definition of the Hankel norm one can
see that the HN norm is the largest output for all possible inputs contained in an unit ball, while
the Hankel norm is the largest future output for all past inputs from the unit ball. From these
definitions it follows that the Hankel norm never exceeds the HN norm (since the set of outputs
used to evaluate the Hankel norm is a subset of outputs used to evaluate the HN norm), thus

jjGjjhpjjGjj
N
: ð49Þ

The Hankel norm can be determined from the controllability and observability grammians as

jjGjjh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðWcWoÞ

p
ð50Þ

where lmaxð:Þ denotes the largest eigenvalue, and Wc; Wo are the controllability and observability
grammians, respectively. It follows from (50) that the Hankel norm of the system is the largest
Hankel singular value of the system, gmax:

jjGjjh ¼ gmax: ð51Þ

6.1.3. The H2 norm

Let GðoÞ be its transfer function of a stable linear system. The H2 norm of the system is defined
as

jjGjj22 ¼
1

2p

Z
N

�N

trðGnðoÞGðoÞÞ do: ð52Þ

Note that trðGnðoÞGðoÞÞ is the sum of the magnitudes squared of all of the elements of GðoÞ; i.e.
trðGnðoÞGðoÞÞ ¼

P
k;l jjgklðjoÞj2: Thus, it can be thought to be an average gain of the system, with

the average performed over all the elements of the matrix transfer function and over all frequencies.
Since the transfer function GðoÞ is the Fourier transform of the system impulse response gðtÞ;

from the Parseval theorem, Eq. (52) can be rewritten as an average of the impulse response,

jjGjj22 ¼ jjgðtÞjj22 ¼
Z

N

0

trðgTðtÞgðtÞÞ dt: ð53Þ

A convenient way to determine the numerical value of the H2 norm is to use the formulas

jjGjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCTCWcÞ

p
; jjGjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðBBTWoÞ

p
; ð54Þ

where Wc and Wo are the controllability and observability grammians.
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6.2. Discrete-time norms

In this section we present the Hankel, HN; and H2 norms for the discrete-time systems, and
compare them with the norms of the continuous-time systems.

6.2.1. The Hankel norm

The Hankel norm of a discrete-time system is its largest Hankel singular value,

jjGd jjh ¼ max
i

gdi; ð55Þ

where subscript d denotes a discrete-time system. Previously, we showed that the discrete-time
Hankel singular values converge to the continuous-time Hankel singular values, see Eq. (36),
therefore the discrete-time Hankel norms converge to the continuous-time Hankel norms when
the sampling time approaches zero:

jjGjjh ¼ lim
Dt-0

jjGd jjh: ð56Þ

6.2.2. The HN norm
The HN norm of the discrete-time system is defined as (see Ref. [13])

jjGd jjN ¼ max
oDt

smaxðGdðejoDtÞÞ: ð57Þ

Since for small enough sampling time the discrete-time transfer function is approximately equal to
the continuous-time transfer function, see Ref. [13], Gd ðejoDtÞDGcðjoÞ; therefore the discrete-time
HN norm converges to the continuous-time HN norm

jjGd jjN ¼ lim
Dt-0

jjGjj
N

ð58Þ

when the sampling time approaches zero.

6.2.3. The H2 norm

The discrete-time H2 norm is defined as an r.m.s. sum of integrals of the magnitudes of its
transfer function, or as an r.m.s. sum of the impulse response

jjGd jj2 ¼
1
2p

Z 2p

0

trðG�
dðe

joDtÞGd ðejoDtÞ dðoDtÞ
� �1=2

¼
XN
i¼0

g2dðiDtÞ

 !1=2

: ð59Þ

In the above equation gdðiDtÞ is the impulse response of the discrete-time system at t ¼ iDt:
Similar to the continuous-time case the H2 norm can be calculated using the discrete-time

grammians Wdc and Wdo

jjGd jj
2
2 ¼ trðCTCWdcÞ ¼ trðBdBT

d WdoÞ: ð60Þ

A relationship between discrete-time H2 norm and the continuous-time H2 norm is derived by
introducing the relationships between discrete-time grammians and the continuous-time
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grammians, as in Eqs. (32) and (34) to Eq. (60). In this way we obtained

jjGjj22 ¼ lim
Dt-0

1

Dt
jjGd jj22: ð61Þ

As we see, unlike the Hankel and HN norm cases, the discrete-time H2 norm does not converge to
the continuous-time H2 norm when the sampling time approaches zero. It can be explained using
the system impulse responses. The continuous-time H2 norm is obtained from the continuous-
time unit impulse response,

jjGjj22 ¼
Z

N

0

g2ðtÞ dt

which can be approximated as

jjGjj22D
XN
i¼0

g2ðiDtÞDt: ð62Þ

The applied impulse value was equal to 1. Note, however, that for the discrete-time system the
impulse response is evaluated for the impulse value different than 1. Indeed, for the discrete-time
system the impulse amplitude was 1 and its duration was Dt: Thus the impulse value, as a product
of its amplitude and duration, is Dt: For this reason, the relationship between the impulse
responses of the continuous- and the discrete-time system is gcðiDtÞ ¼ gdðiDtÞ=Dt: Introducing this
equation in Eq. (62) one obtains

jjGjj22D
1

Dt

XN
i¼0

g2dðiDtÞ ¼
1

Dt
jjGd jj

2
2

which is identical to Eq. (61).

7. Norms of flexible structures

In this section we derive the closed-form expressions for the Hankel, HN and H2 norms of a
single mode, and explain how to obtain a norm of an entire structure from the norms of modes. It
will be done in both the continuous- and discrete-time cases.

7.1. Continuous time norms of flexible structures

For structures in the modal representation, each mode is independent, thus the norms of a
single mode are independent as well.

7.1.1. The H2 norm
Consider the ith natural mode and its state-space representation ðAmi;Bmi;CmiÞ; see Eq. (7a).

For this representation one obtains the following closed-form expression for the H2 norm,
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see Ref. [1]:

jjGijj2D
jjBmijj2jjCmijj2

2
ffiffiffiffiffiffiffiffi
zioi

p : ð63Þ

Note also that jjGijj2 is the modal cost of Skelton [14].
The above represent the H2 norm of a single mode. The H2 norm of the entire flexible structure

is the r.m.s. sum of the modal norms

jjGjj2D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
jjGijj22

q
; ð64Þ

where n is the number of modes. It can be shown, by noting that the controllability grammian Wc

in modal co-ordinates is diagonally dominant, that

jjGjj22 ¼ trðCT
mCmWcÞD

Xn

i¼1

trðCT
miCmiWciÞ ¼

Xn

i¼1

jjGijj
2
2:

7.1.2. The HN norm
The HN norm of a natural mode can be approximately expressed in closed-form as:

jjGijjND
jjBmijj2jjCmijj2

2zioi

: ð65Þ

In order to show this, note that the largest amplitude of the mode is approximately at the ith
natural frequency, thus

jjGijjNDsmaxðGiðoiÞÞ ¼
smaxðCmiBmiÞ

2zioi

¼
jjBmijj2jjCmijj2

2zioi

:

The above represents the HN norm of a single mode. Due to the almost independence of the
modes, the HN norm of a flexible structure is the largest of the mode norms, i.e.,

jjGjj
N
Dmax

i
jjGijjN; i ¼ 1;y; n:

7.1.3. The Hankel norm

For a single mode this norm is approximately evaluated from the following closed-form
formula, see Ref. [1]:

jjGijjh ¼ giD
jjBmijj2jjCmijj2

4zioi

: ð66Þ

The Hankel norm of the entire structure is the largest norm of its modes, i.e.,

jjGjjhDmax
i

jjGijjh ¼ gmax; ð67Þ

where gmax is the largest Hankel singular value of the system.
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7.1.4. Norm comparison

The Hankel and HN norms are related to the Hankel singular values as follows, see Ref. [15, p.
156]:

jjGjjh ¼ gmaxpjjGjj
N
p2

Xn

i¼1

gi: ð68Þ

It is a very rough estimation, indeed, since it says that gmaxp2gmax: However, for structures more
precise estimation can be obtained. Comparing Eqs. (63), (65) and (66) one obtains the
approximate relationships between H2; HN; and Hankel norms,

jjGijjND2jjGijjhD
ffiffiffiffiffiffiffiffi
zioi

p
jjGijj2: ð69Þ

The norms depend on modal damping, as illustrated in Fig. 4.

7.2. Discrete-time norms of flexible structures

The norms of discrete-time structures are obtained in a similar way as the norms of the
continuous-time structures. First of all, the system matrix Ad in discrete-time modal co-ordinates
is block-diagonal, similar to the continuous time case. For a diagonal Ad the structural norms are
determined from the norms of structural modes, as described previously.
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7.2.1. The Hankel norm

The Hankel norm of the discrete-time system is defined (similar to the continuous-time case) as
a ‘‘geometric mean’’ of the discrete-time reachability and observability grammians, i.e.,

jjGd jjh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðWdcWdoÞ

p
: ð70Þ

The grammians in modal co-ordinates are diagonally dominant, therefore for a single (ith) mode
we obtain from Eqs. (40) and (41) as

jjGdijjh ¼ kiDt
jjBmijj2jjCmijj2

4ziooi

¼ kijjGijjh; ð71Þ

where ki is given by Eq. (44b), ooi ¼ oiDt; and jjGdijjh is the Hankel norm of the ith mode in
discrete- time, while jjGijjh is the same norm of the ith mode in continuous- time. For fast
sampling, i.e., when Dt-0 one obtains ki ¼ 1; which means that the discrete Hankel norm
converges to the continuous one.
Similar to the continuous-time case the Hankel norm of the entire structure is the largest norm

of its modes, i.e.,

jjGd jjhDmax
i

jjGdijjh ¼ gd max; ð72Þ

where gdmax is the largest Hankel singular value of the discrete-time system.

7.2.2. TheHN norm

The HN norm of a discrete-time system is defined as the peak magnitude over the segment
0poDtpp; i.e.,

jjGd jjN ¼ sup
oDt

smaxðGdðejoDtÞÞ: ð73Þ

For the discrete-time structure it is the largest norm of its modes. However, the HN norm of the
ith mode is approximately the magnitude at its resonant frequency, thus for the ith mode, from
the above definition,

jjGdijjNDsmaxðGdiðejoiDtÞÞ ¼ l1=2maxðGdiðejoiDtÞG�
diðe

joiDtÞÞ; ð74Þ

where Gdi is the discrete-time transfer function of the ith mode, and oiis its natural frequency, and
lmax denotes the maximal eigenvalue.
In order to obtain its HN norm we use the discrete-time transfer function of the ith mode as in

Eq. (17a) and (17b) at o ¼ oi: First, note that z ¼ ejoiDt ¼ cosðoiDtÞ þ j sinðoiDtÞ; and that for
small zi one can use approximation e�zioiDtD1� zioiDt: Now using Eq. (17a) one obtains

ðzI � AÞ�1jz¼ejoiDt ¼
1

2zioiDt

j 1

�1 j

" #
:

For Bdmi as in Eq. (15b), and Bmi ¼
0

bmi

� 

; the modal transfer function at its resonance frequency

is therefore

GdmiðoiÞ ¼
Cmi

2zio2
i Dt

1� cosðoiDtÞ � j sinðoiDtÞ

sinðoiDtÞ þ jð1� cosðoiDtÞÞ

" #
bmi:
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Introducing the above in Eq. (74) one obtains

jjGdijjN ¼ l1=2maxðGdiðejoiDtÞG�
diðe

joiDtÞÞ ¼
jjCmijj2jjbmijj2

zio2
i Dt

ð1� cosðoiDtÞÞ: ð75Þ

which can be presented in the form

jjGdijjN ¼ kiDt
jjBmijj2jjCmijj2

2ziooi

¼ kijjGijjN; ð76Þ

where ooi ¼ oiDt; jjGijjN is the HN norm of the continuous-time mode, c.f. Eq. (65), and ki is the
coefficient given by Eq. (44b). Since ki ¼ 1 for Dt-0; the discrete-time HN norm converges to the
continuous-time norm.
The above represents the HN norm of a single mode. Due to the almost independence of the

modes, the HN norm of a flexible structure is the largest of the mode norms, i.e.,

jjGd jjNDmax
i

jjGdijjN; i ¼ 1;yn: ð77Þ

7.2.3. The H2 norm

Similar to the continuous-time case, the H2 norm of a structure is the r.m.s. sum of the H2

norms of its modes,

jjGjj2D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
jjGijj22

q
; ð78Þ

where n is the number of modes.
The H2 norm of the ith mode is obtained as

jjGdijj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðBT

diWodiBdiÞ
q

ð79aÞ

or, alternatively,

jjGdijj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCdiWcdiC

T
diÞ

q
: ð79bÞ

Using Eqs. (79a), (15b) and (41) we obtain

jjGdijj
2
2 ¼

1

Dt
trðBT

i ST
i WoiSiBiÞ ¼

woi

Dt
trðBT

i ST
i SiBiÞ;

where woi is the continuous-time grammians given by Eq. (37b). Note also that

ST
i Si ¼

2ð1� cosðoiDtÞ
o2

i

I2:

Thus

jjGdijj22 ¼
2woið1� cosðoiDtÞ

Dto2
i

trðBT
i BiÞ ¼ woijjBijj22

2ð1� cosðoiDtÞ
Dto2

i

¼
jjCijj

2
2jjBijj

2
2

4zioi

Dt
2ð1� cosðoiDtÞ

Dt2o2
i

¼ jjGijj22Dt k2
i ;
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where jjGijj2 is the H2 norm of the mode in continuous time. Therefore,

jjGdijj2 ¼ kiDt
jjBmijj2jjCmijj2
2
ffiffiffiffiffiffiffiffiffiffi
ziooi

p ¼ ki

ffiffiffiffiffi
Dt

p
jjGijj2; ð80Þ

where ooi ¼ oiDt: For fast sampling ki-1; thus

lim
Dt-0

jjGdijj2ffiffiffiffiffi
Dt

p ¼ jjGijj2: ð81Þ

The above equation indicates that the discrete-time H2 norm does not converge to the
continuous time. This is a consequence of non-convergence of the discrete-time reachability and
observability grammians, to the continuous-time grammians, as we showed it previously.
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7.2.4. Norm comparison

From Eqs. (71), (76) and (80) the following relationship between the norms of a single mode of
a discrete-time system is obtained:

jjGdijjND2jjGdijjhD
ffiffiffiffiffiffiffiffiffiffi
ziooi

p
jjGdijj2; ð82Þ

which is similar to the continuous-time norm, as in Eq. (69).

Example 2. Consider a beam in Fig. 5. Its model consists of the first 15 modes (or 30 states), with
a vertical force applied at node 6, and a velocity measured at node 6 in vertical direction. The
Hankel and H2 norms were determined for its continuous- and discrete-time models, and are
plotted in Fig. 6. The beam largest natural frequency is 6221 rad/s. We chose sampling time of
0.0003 s. The Nyquist frequency for this sampling time is p=Dt ¼ 10472 rad/s, so that the largest
natural frequency is close to the Nyquist frequency. The plots of the norms are shown in Fig. 6,
for the continuous-time model in solid line, for the discrete-time model in dotted line. The Hankel
norms for the continuous- and discrete-time models are almost identical, except for some
discrepancy at higher modes, with natural frequencies close to the Nyquist frequency. The H2

norms of the continuous- and discrete-time systems are separated by the distance of 1=
ffiffiffiffiffi
Dt

p
¼

57:74; as predicted by Eq. (80).

8. Conclusions

The Hankel, HN; and H2 norms were analyzed in this paper. They were obtained for the
continuous- and discrete-time systems, and compared. These norms were obtained in closed form
for natural modes of flexible structures, and for an entire flexible structure as the rms sum of
modal norms (for the H2 norm), and as the maximal modal norm (in case of the Hankel and HN

norms). We also derived the relationship between the continuous and discrete- time norms. We
showed that the HN; and Hankel discrete-time norms converge to the continuous-time
counterparts when the sampling time approaches zero. We show, however, that the H2 norm
does not converge.

References

[1] W. Gawronski, Dynamics and Control of Structures, Springer, New York, 1998.

[2] R.E. Skelton, Dynamic System Control: linear system analysis and synthesis, Wiley, New York, 1988.

[3] C.Z. Gregory Jr., Reduction of large flexible spacecraft models using internal balancing theory, Journal of

Guidance, Control, and Dynamics 7 (1984) 725–732.

[4] E.A. Jonckheere, Principal component analysis of flexible systems—open loop case, IEEE Transactions on

Automatic Control 27 (1984) 1095–1097.

[5] W. Gawronski, J.N. Juang, Model Reduction for Flexible Structures, in: C.T. Leondes (Ed.), Control and

Dynamics Systems, Vol. 36, Academic Press, San Diego, CA, 1990, pp. 143–222.

[6] T. Williams, Closed form grammians and model reduction for flexible space structures, IEEE Transactions on

Automatic Control AC-35 (1990) 379–382.

ARTICLE IN PRESS

W. Gawronski / Journal of Sound and Vibration 264 (2003) 983–1004 1003



[7] K.B. Lim, W. Gawronski, Hankel singular values of flexible structures in discrete time, AIAA Journal of

Guidance, Control, and Dynamics 19 (6) (1996) 1370–1377.

[8] R.W. Clough, J. Penzien, Dynamics of Structures, McGraw-Hill, New York, 1975.

[9] M.R. Hatch, Vibration Simulation Using Matlab and ANSYS, Chapman & Hall/CRC Press, London/Boca

Raton, Fl, 2000.

[10] G.F. Franklin, J.D. Powell, M.L. Workman, Digital Control of Dynamic Systems, Addison-Wesley, Reading,

MA, 1992.

[11] B.C. Moore, Principal component analysis in linear systems, controllability, observability and model reduction,

IEEE Transactions on Automatic Control 26 (1981) 17–32.

[12] S.P. Boyd, C.H. Barratt, Linear Controller Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

[13] T. Chen, B. Francis, Optimal Sampled-Data Control Systems, Springer, London, 1995.

[14] R.E. Skelton, Cost decomposition of linear systems with application to model reduction, International Journal of

Control 32 (1980) 1031–1055.

[15] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control, Wiley, Chichester, England, 1996.

ARTICLE IN PRESS

W. Gawronski / Journal of Sound and Vibration 264 (2003) 983–10041004


	Discrete-time norms of flexible structures
	Introduction
	Structural equations
	State-space modal representation
	Continuous-time state-space representation
	Discrete-time state-space representation

	Controllability/reachability and observability
	Continuous-time controllability and observability
	Discrete-time reachability and observability
	Convergence of the discrete-time grammians

	Grammians of flexible structures
	Continuous-time grammians of flexible structures
	Discrete-time grammians of flexible structures

	Norms
	Continuous-time norms
	The Hinfin norm
	The Hankel norm
	The H2 norm

	Discrete-time norms
	The Hankel norm
	The Hinfin norm
	The H2 norm


	Norms of flexible structures
	Continuous time norms of flexible structures
	The H2 norm
	The Hinfin norm
	The Hankel norm
	Norm comparison

	Discrete-time norms of flexible structures
	The Hankel norm
	TheHinfin norm
	The H2 norm
	Norm comparison


	Conclusions
	References


